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This paper is concerned with sets IlU of sequences (W);:, E'll.\ of positive linear
operators which are of certain probabilistic type and act on certain function
classes K. Necessary and sufficient conditions upon Ware determined such that
each element (Wn);;':, E W approximates U with a given order of approximation
<f;(n) and a given function class K, the limiting operator U being either the identity
lor an operator connected with the normal distribution. The saturation problem
in this setting is also solved, now in a form giving the order of saturation <f;(n)
such that convergence of (Wn ),:;:, towards U of order o(<f;(n)), n ->- 00, is im
possible unless Wn = I, n EN, and there exists a non-trivial element (W")~,

which approximates U with order (I)(<f;(n)).

I. TNTRODUCTION

In the classical saturation problem, one considers a fixed approximation
process (U")~l and asks for its saturation class

S = {f; II Un! -! II = (r)(l/J(n))}, (I. I)

where l/J is to be determined in such a way that II Un! ~! I == o(l/J(n)),
n ---->- x, implies f to be trivial. Several mathematicians such as Zhuk and
Natanson [9] consider what they call a converse problem of saturation theory:
they start with a class of functions K and try to find one approximation process
for which K is the saturation class.

In this paper we also consider a fixed function class K, but we are interested
in all sequences of operators (of a certain probabilistic type) that approximate
each f E K with a prescribed order of approximation lj;, not necessarily the
order of saturation. Moreover, looking at (1.1), we consider convergence of
(U,.r:::d to not merely to the identity operator I but also to some other opera
tors, and, in contrast to (I. I), not (only) in the norm but even in the pointwise
sense.

More exactly, let K be a fixed function class defined on some interval J C [1;1;,

and consider U, the set of sequences of positive linear operators (Un)'::=1
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with KC D(Vn), the domain of Vn , as well as some positive linear operator,
namely the limiting operator V with K C D(V). Given K, V, lj;, the problem
is to determine the subclass Un C U such that

I Vn/(x) - Vf(x) I (!7(v/(n)) (eachfE K) (1.2)

if and only if (Un);';d E Un , where x E J is fixed and v; describes the order of
approximation, i.e., to find

Un = {(Un)r~~l E U; I Un/ex) ~ U/(x)!= (!7(lj;(n»), eachfE K}. (1.3)

Un is the saturation class in this setting, now called satiety class, if (i) Un is
not the trivial class, i.e., we do not have, for all IE K, n EN,

but,/E K and

Un/ex) = Uf(x),

(ii) I Un/ex) - Uf(x) I o( lj;(n)

( 1.4)

( 1.5)

imply (1.4); in this case U is said to be satiated with satiety order lj;(n).
Notice that the large "(!7" and small "0" terms may depend on the fixed point
x E J, the operator U and the function IE K. Of course, one could detach the
matter from a fixed x E J and consider the problem for all x E J, i.e., add
"x E J" in formulas (1.2)-(1.5), the problem nevertheless still being pointwise.
Recall that assertions such as (1.2) or (1.5) for, e.g., the Szasz-Mirakjan or y
operators do not hold uniformly, so that we have to consider them in the
pointwise sense.

In the following, as indicated above, we do not consider the whole class U
but only a subclass 1lJ3 C U such that the elements (WrJ~"l E Ware of the
probabilistic form

Wn(cp(n))f(x) = E(fo [cp(n)(Xl + X 2 + '" + Xn)])

= E(f 0 qJ(n) Sn) = r:, f(u) dF<p(n)S,,(u)

(1.6)

(eachfE K),

where (Xi );':l are real independent, identically distributed (i.i.d.) random
variables (LV.) which will be constructed in dependence upon x E J, S" is the
nth partial sum of the LV. Xi' and cp is a normalizing function cp: N ---+ [f;£,

tending to zero for n ---+ 00; in the sequel we consider two concrete specializa
tions of cp, namely qJ(n) = n-1 and cp(n) == Ir1 / 2. Examples of operators that
belong to Ware the Bernstein, Sza.sz-Mirakjan and Baskakov operators in
the discrete case, and the Weierstrass and y operators (in Feller's version)
in the continuous case. The probabilistic structure of the operators guarantee
at once that Wn( cp(n» 1 = 1.
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The precise formulations of the main results are to be found in Theorems 1,
2 and 3; they will be proved by elementary stochastic methods.

2. NOTATIONS AND PRELIMINARIES

Let (Xi)!:l be a sequence of real i.i.d.Lv., all distributed as a LV. X, and
assume the limiting LV. Z to be cp-decomposable, i.e., for each n EN there
exist n independent LV. Zl,n , ... , Zn,n such that

where Fy denotes the distribution function (d.f.) of a LV. Y (the decomposa
hility concept was introduced in [3] to prove general limit theorems in
probability theory).

Further, let C(J) denote the vector space of all real-valued continuous
functions on an interval J C IR, and Cb(J) the subset of all bounded and
uniformly continuous functions on J. For r,.i E IP' : = N u {O} set

C{(J):= {IE C(J);j',j", ...,pr-ll E C(J),j(rl E Cb(J)},

and jj(x) : = Xi. Finally, let ]0:[ be the greatest integer less than or equal to
0: 0, and [0:] be the smallest integer greater than or equal to 0: > O. Two
general inverse theorems on LV. will be needed (see [6]).

THEOREM. Let the rth moment E(zr) be finite for some r EN.

A. Iffor some f3 > 0

rf~ feu) d[F<p(n)S,,(u) - Fz(u)] = (0(ncp(n)8)
~..__ oX)

for each f E CbT(IR), then

(i) E(xr) < 00,

(ii) E(Xj) = E([Z/cp(l)]i) (0 ~j.~ [miner, (3)] - 1).

B. I{

if feu) d[F<p(n)sJu) - Fz(u)] = o(ncp(nY)
~ -(f_

for each f E cbr(IR), then

(i) E(xr) < 00,

(ii) E(Xj) == E([Z/cp(l)]i) (0 ~j ~ r).

(n ->- (0)
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[n view of C,)"(IR) C cbr(J) one may replace cbr(lR) by C"r(.l) for some
interval J C R

3. THEOREMS CONNECTED WITH THE LIMITING OPERATOR I

In this section we consider the case (p(n)
operators U" are of the form (cf. (1.6»

lin and U= I, so that the

W,,(l/n)f(x) (n EN). (3.1 )

THEOREM I. Let x E J he ./i-yed.

(a) fl

W,,{ljn)f(x) I(x)1 =c 1(1)

for eaehfE C"l(.l), then

(i) E(X)XJ.

(ii) W,,(1 in)Ux) = Ux) x (n (= N).

(b) II

Wn( Iln)f(x) I(x)!

for each f c C,,~(J) and some ex 0, thell

(i) E()(~) 00,

(ii) W,,(I!n)h(x) j~(x) x (n EN)

(c) II

W,l I In)f(x)- I(x)

(n -+ co)

(n >-Xi)

(3.2)

(3.3)

(3.4)

for eachfE C'i~(J), then

(i) E(X2) < CXJ,

(ii) Wn(lfn)I(x) coof(x) (each fE C(l); n EN), i.e" Wn(!;n) inter

polates at x.

Proof To utilize the theorems given above for cp(n) ..~ n l , we have
to determine the limiting LV. Z and the associated components. For fixed
x E IR let Z be distributed as X,. , i.e.,

Fz(u) o. Fx)u): O.

I,

u x

x II
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In other words, P({X,), = xD = I. Notice that here the limiting LV. Z also
depends on x E J. It is easy to see that Xx is lin-decomposable with compo
nents Zi.n all distributed as X,), ; hence

For the moments of Xx we have E(X/) = x r, In view of (1.6) and

.[f(u) dFx,,(u) = f(x)

(3.2) can therefore be written in the form

(3.5)

(" f(u)d[Fs"inCU) - Fx,(u)] ~= (.(1)
, -"lJ

To prove part (a), use Theorem B with r = I to yield E(X) < 00 and E(X)
E(X,,) = x. This leads to

Concerning part (b), Theorem A is applicable with r = 2, (3,~ I + ex,

so that (min(r, (3)] = 2.
Finally, for part (c) use Theorem B again, but now for r c-= 2. so that

E(X2) < 00 follows immediately, and additionally

(0 ~ j 2).

Hence E(X) = x and E(X2) x2, Then

Var (X) : == E([X - E(X)]2) = E(X2) - x2 = O. (3.6)

leading to X = x P-a.s, Therefore Fr = Fx ' which implies Fs 1,,= Fx '
• oX n J:

Finally,

W(I /n) f(x) ~.' roo feu) dFs,,:,,(u)
.. --y:;

(3,7)

,yo feu) dFx/u) f(x),
• -_·Yj

even for each measurable and bounded f since Wn(l!n) is defined for suchf
This completes the proof of Theorem I,
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It seems worthwhile to combine the inverse Theorem I with direct theorems
of [7]. So one has the following results for 1ffi0In), the set of sequences of
operators of the form (1.6) with ep(n) n-1 and x E J. Below, for example,
{i WnOln)f(x)- f(x)1 = vO), IE Cb

1(J); means the set of all sequences
(WnOln))~d E 1ffi01n) such that I WnO(n)f(x) - f(x)1 ,,(I), n --+ 00, for
each IE Cbl(J).

THEOREM 2. Let WnOln)f(x) be dejined by (3.1). Then one has

(a) {I Wn(lln)f(x) - f(x)1 c= o(l)JE C/)l(J)} ~c {Wn(l(n)f1(x) };(x),
n E N, and E(X) < oo},

(b) {I Wn(lln)f(x) - f(x) = (1)(n- 1). IE Cb2(J)} {WnO (n)f1(X)
};(X), n EN, and E(X2) < oo},

(c) {I WnOln)f(x) - f(x)] c_c o(n-1)JE C1/(J)} == {Wn(l(n)f(x) =f(x),
n E NJE Cb(J), and E(X2) < oo}.

To discuss assertions (a), (b) and (c), if one assumes directly that E(X 2) <
00, i.e., Cb2(J) belongs to the domain of WnCl(n), n E N, then a comparison
of (a) and (b) shows that a pointwise approximation process of W(l/n)
automatically approximates f(x) with (!JOin) (for smooth f). Moreover, (b)
and (c) together show that W(I In) is satiated with satiety order lin, i.e., the
rate ,;(lln) is impossible, unless Wn(lln) is the identity I.

Notice that the last assertion gives a partial answer to a problem posed
by P. L. Butzer in 1963 and recalled by a number of authors (compare, e.g.,
[1, 5]): Is it possible to construct a sequence of algebraic polynomials,
defined on [0, I], which are of the same structure as the Bernstein polynomials
and which approximate the associated function I with an order (0(n-- 2) on
[0, l] provided r E C[O, I]? As mentioned above, the sequence of the
Bernstein operators belongs to 'lE(l (n), and Theorem 2 states in this respect
that as long as one modifies the Bernstein operators in such a fashion that the
new operators still belong to Iffi(lln), then a better rate than 0(n-1) is impos
sible. So in this case the answer to the problem just mentioned is negative.

Recalling the well-known Bohman-Korovkin theorem, we know that for
the class U the (test) functionsfo ,}; and); already guarantee that (Un):d E U
is an approximation process. If one now considers the smaller class 1ffi01n) C
U, then (a) shows that the two functionst;) ,h already guarantee (WnOln)r::d I"
UOln) to be an approximation process. But (a) gives even more information.
If one has a sequence of positive linear operators Un that defines an approxi
mation process, and UnA(x) =~ fleX) does not hold (but of course approxima
tively for n-+ 00), then Un cannot have the probabilistic form (3.1), i.e ..
there cannot exist LV. Xi such that Unf(x) == E(fo [Sn/nl).
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4. RESULTS FOR THE LIMITING V CONNECTED WITH THE NORMAL DISTRIBUTION

For a second application of Theorems A and B we choose rp(n) =, llyn
and Fz = Fx • , where X* is a normally distributed T.V. with mean °and
variance I, i.e.,

I .U

Fx'(u) :=c ~_--= / C- t"!2 dt.
\/27T '.X)

Concerning (1.6) we now consider operators (Wn(l! yn))~~l E Wellyn) of
the form

Wn(l!vn)j(x) = £(fo [Sn!vn])

the limiting operator now being

(fE K), (4.1)

I rn

Vf = Vd: = ~= J(t) e- t2
!2 dt,

V27T >--X'

(4.2)

which is independent of x E R Then we have the following theorem (the
proof follows from [6])

THEOREM 3. Let x E R befixed.

(a) If

I Wn(l/\/n)j(x) - Udl= G(n-')

for some IX > 0, then

(4.3)

(i) £(XJ2n+2[) < 00,

(ii) E(Xj) = E(X*j) (0 ~ j z':;; [2IX -;- 2] - I).
(4.4)

(b) If

I Wn(l!vn)j(x) - Vdl = o(n- r
/
2

)

for some r E IP, then

(eachfE C~+2(~); n -+ 00)

(4.5)

(i) E(xr+2) < 00,

(ii) E(Xj) = E(X*j) (0 ~j ~ r -+ 2).
(4.6)

With corresponding direct results of [4], conditions (4.4) and (4.6) also
imply (4.3) and (4.5), respectively, the counterpart of Theorem 2 could there
fore be formulated, characterizing the operator classes Wo(l!-01) C W(1! -01).
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[n contrast to the previous case (with the limiting operator I), W(ljyn) is not
polynomially satiated since each fixed arbitrary high order of approximation
n-", ex> 0, of (W,,(1jyn))~clE '113(1/ yn) towards VI is possible (cf. (4.4))
without implying Fx Fx*, or equivalently W,,(I/yn) VI' n EN.
But if one would require exponential approximation order e-an , some a 0,
implying

C(11' )

for each ex 0, then (4.4) would yield that all moments of the LV. X coincide
with those of X*, thus F r f~\", since the moments of x* are known to
generate a well-defined Hamburger moment problem.

On the other hand, given an arbitrary sequence of LV. Xi that determine a
corresponding operator, one may transform this sequence by setting X; :
[Xi - E(Xi)]f(Var(Xi))I/2 if °<: Var(Xi ) <:XJ, so that E(Xi) E(X~j).

jc= 0, I, 2. [Of course, in general E(.}{:l) c/c E(x*a) ( 0)]. This means that
for these operators the best possible rate of convergence is given by

This is the situation for binomially and exponentially distributed LV. X
leading to Bernstein and SZ~lsz-·Mirakjan operators. An example of LV.

which yield higher order of approximation is given in [2]. For each x E (0, H
the corresponding r. v. X(x) are defined via their distributions by P({ Xix)
-_(2X)-I/2}) == P({X(x) (2X)-1/2}) x and P({X(.y) OJ) 1 2x. Some

calculations yield that the corresponding operator Bn< I! yn)f(y) E(f
[S,,! vln]), x E (0, H is of the form

B,,(I \11)f(x) (
k J j'

2x)" If .:.j.
\ 211x '

For this operator, which is a polynomial of degree 11, we have as best possible
rate for x E (0, ~]\g;

I B,,( I \/11) fix) uJ nil I) (each ft c,,4(1R»I

and for x

! B,,(I \ ',i) f(.\) UJi t(11 ") (eachfl' C/;(IR».

Let us conclude this paper with the following remark: An important result
of A. Y. Khintchine (cf., e.g., [8]) states that if ep(n) S" converges in distribu-
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tion to a LV. Z, then Z must be stably distributed; convergence in distribution
means that

lim E(fo [ep(n) Sn]) = lim W"(ep(n))f(x)
n-Hf; n -,~L

E(fc Z) (each IE C/,"(IR))

for any r Ie' IP'. Thus all possible limiting operators Vol' sequences of operators
of probabilistic type (1.6) are determined by the stably distributed LV. Z,
namely Vr E(f 0 Z). If one now assumes additionally that .j; EO D(U)
--which is natural when considering rates of convergence-or, equivalently
that the second moment of Z is finite, then the only remaining stably distri
buted r. v. Z are XJ and X*. Furthermore, the (p-decomposability of these
limiting LV. is needed, which is exactly true for ep(n) Ir1 and (p(n) n-1/2.

respectively. This is the reason why the probabilistic approach of this paper
only allows one to consider the operators Wn(1/n), W,,( I! yin) with the corre
sponding limiting operators I and Uj
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